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Based on the similarity theory, a complete set of dimensionless parameters was found, which 
would allow one to choose the geometry, temperature, and other conditions leading to simi- 
larity between hydrodynamic phenomena in melted semiconductors and model media. Direct 
calculations performed by the Oberbeck-Boussinesq system of equations validate our theoreti- 
caI approach to the problem of choosing model media for various liquids and different gravity 
conditions. 

In t roduc t ion .  The growth of single-crystal materials with desired electrical and other properties is 
a complex technological problem. Normally, melted semiconductors are low-viscous liquids with high surface 
tension, which is responsible for their extreme sensitivity to various disturbing factors. The use of shock- 
mounted platfbrms and suspensions substantially decreases the level and frequency of external disturbances 
penetrating into the melt. However, low-frequency modes or small components of mass forces directed along 
the crystallization front and caused; for instance, by the nonvertical position of the setup may result in 
appreciable shear flows near the growing surface of the crystal. The presence of a free surface of the melt and 
the occurrence of temperature gradients in it produce an intense source of disturbances whose detrimental 
action is very difficult to avoi& especially under the conditions of space environment. Since crystallization 
normally proceeds at high temperatures in vacuum and the melts are nontransparent for radiation, the 
diagnostics of processes in melted semiconductors is extremely difficult. One can study the processes in melts 
solely by studying the grown crystals, which seriously worsens the quality of information. Therefore, the 
solution of the problem of the proper choice of model media in which hydrodynamic processes are similar to 
those in melted semiconductors may prove useful for solving the technological problem of obtaining materials 
with desired properties. 

1. M a t h e m a t i c a l  Model  and Dimens iona l  Analysis .  The processes in melted semiconductors 
are usually described by the system of the Oberbeck-Boussinesq equations [1]. A mathematical model for 
thermogravity flows with allowance for impurity transfer and thermocapillary convection for two-dimensional 
unsteady problems has been developed and tested on various types of flow [2]. The traditional method of 
nondimensionalization with respect to a velocity U and the diameter of the flow region (characteristic length) 
L yields the following similarity parameters [2]: 
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Here Gr, Re, Fr, VVe, Mn, Pr, and Sc are the Grashof, Reynolds, Froude, Weber, Marangoni, Prandtl, and 
Schmidt numbers, respectively, P0 is the density, v is the kinematic viscosity, a0 is the surface tension, /3 is 
the thermal expansion, ke is the thermal diffusivity, k c  is the diffusivity, k~ is a constant, g is the free-fall 
acceleration, and A0 is the characteristic temperature difference. The surface tension a is assumed to depend 
linearly on the temperature 0: a = a0(1 + ka(O - 00)).  

A great number of parameters in (1), their nonlinear dependence on input constants, and the nonlin- 
earity of fluid-dynamic equations hinder the effective prediction of crystallization parameters. The problem 
of a proper choice of similar media for which the numbers in (1) are almost identical is practically insoluble 
[3]. However, if we use 

L = (ao / (gpo ) )  1/2 = 5~, U = (Crog/po) I/4 ( t  = ( L / U ) t ' =  ( 5 ~ / g ) l / 2 t ' )  (2) 

as L and U, the equations of motion and the boundary conditions acquire the following form: 
O V  
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2 
P -  ~ e g  n . D . n = H + Pa; (6) 

2r  ~ D .  n = MngR%Vy0. (7) 

Here t is time, V is the velocity vector, P is the pressure, 0 is the temperature, C is the concentration, n :  is 
the unit vector directed against the gravity force, r and n are the vectors normal and tangent to the free 
surface, D is the deformation rate tensor, H is the curvature of the free surface, Pa = const is the pressure at 
the free surface, and ~ f  is the gradient along it. All other boundary conditions are assumed to be specified. 

From (2), it follows that the Froude and Weber numbers equal unity, and the Prandtl and Schmidt 
numbers remain unchanged. The other dimensionless parameters are 

Reg /, 603 .~1/4 M_l/4, Grg =/3A0, Mng = kaAO.  (8) 
= \p3g.4] = 

Here M = p 3 v 4 g / a 3  is the Morton number [5]. 
Involvement of g in characteristic parameters (2) results in the fact that the quantity g enters only 

Reg in combination with physical constants of the medium. The parameter Reg enters Eqs. (3)-(5) in the 
same manner as the Reynolds number enters the initial equations (it is a coefficient at higher derivatives). 
This allows one to gain a better insight into the behavior of general solutions of the equations as g varies. 
The simple structure of other parameters permits easy classification of similar physical phenomena. For two 
phenomena to be similar, it is necessary and sufficient that the numerical values of all dimensional parameters 
be equal [3]. From (3)-(7), it follows that it is necessary and sufficient for the above that the Reg, Grg, Mng, 
Pr, and Sc numbers for the two media be equal [with the correspondence between the characteristic flow 
parameters of each medium given by (2)]. 

2. Numer i ca l  Model ing.  The calculations were performed using the COMGA computer code [6]. 
The equations of motion were solved to yield the stream and vorticity functions in the dimensional form. The 
nondimensionalization, estimation of the dimensionless parameters, and comparison between the solutions 
for different media were performed immediately after the numerical solutions were found. The accuracy of 
the calculations was tested on model problems by calculating on a sequence of meshes with increasingly 
refined mesh widths. From the experimental data, a mesh with about 8000 nodal points equally spaced over 
the coordinate axes was chosen. This mesh enabled us to model flows with a Reynolds number as high as 
1000. The numerical solutions were compared by matching the flow patterns obtained (stream function and 
temperature isolines) and the highest and lowest values of the stream function. 
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TABLE 1 

No. Medium T~ ~ 

Water 20 1.00 
Gallium antimonide (GaSb) 712 6.03 
Water 80 0.97 
Germanium 937 5.51 

p, g/cm 3 t~, cm2/sec a, d.vn/cm 

0.01 
0.0038 
0.0033 
0.00135 

Pr M 

72.8 7.1 2.54 - 10 - u  
454 0.05 4.80.10 -13 
62.6 2.2 4.32.10 -13 

600 0.017 2.52.10 -15 

In modeling the initial medium, we used physical parameters of two melted semiconductors, germanium 
doped with gallium and gallium antimonide doped with tellurium (see Table 1, medium Nos. 2 and 4). These 
are typical semiconductors widely used in experiments on single-crystal growth. The adopted geometry of 
the melted region and the boundary conditions were similar to those in the Bridgman method with heating 
from above. The bo t tom flat and side cylindrical surfaces were assumed to be rigid, and the at tachment  
conditions for velocity were adopted there. The upper free surface was assumed to be fiat. The bot tom 
surface is isothermal, and a linear temperature  gradient along the vertical direction was set at the side 
surface. The tempera ture  difference along the vertical axis of symmetry  is 150~ which is in line with 
available experimental  data  on crystal growth [7]. At the free surface, the temperature  distribution was 
assumed to be linear along the radius with a tempera ture  difference of I~ 

3. C h o o s i n g  M o d e l  P h y s i c a l  M e d i a .  Only temperature-related problems are considered below. In 
this case, for two media to be similar, the equality between Reg, Grg, Mng, and Pr  in two media is necessary 
and sufficient. For simplicity, the thermal conductivity of the model medium is set such that  the Prandt t  
numbers of the media are equal to each other. The equality between the Reg numbers of two similar media 
can be most easily at tained by a proper choice of g in the model medium for given physical constants. Equal 
values of Grg can be obtained by setting the temperature  difference for the model medium. Finally, the 
tempera ture  difference already chosen, the equality between the Mn 9 numbers is possible only for a certain 
value of ka of the model medium. 

Since two temperature  gradients, radial and vertical, are involved in the problem of interest, it is 
required to decide which of them is of greater importance and, hence, should enter relations (8). The radial 
tempera ture  gradient depends on the side heating, which gives rise to natural convection in the melt. Upon 
heating from above, the vertical temperature gradient may affect tile flow structure [8], however, in the absence 
of a radial tempera ture  gradient, it cannot bring the liquid into motion (steady stratification). Therefore, it is 
the radial tempera ture  difference that  should enter (8), and the equality of the Grg numbers implies a certain 
radial tempera ture  difference to be chosen for the model medium. The vertical difference in temperature  
can be found from similar reasoning. Thus, an optimal sequence for choosing the external parameters of the 
problem is established, which results in equal dimensionless parameters (8) of the initial and model media. 
It remains to find the geometric dimensions of the model medium. We use the Laplace capillary constant as 
a characteristic length. We find its magnitude for the model medium from the known value of g. From here, 
with due allowance for the ratio of geometric dimensions of the flow of the initial medium to its capillary 

constant,  the desired characteristic length for the model medium can be easily found. 
3.1. Similarity between Flows at a Large Difference in the Morton Numbers for the Initial and Model 

Media. As an example, we consider water as a model medium (see Table 1, medium No. 1). The physical 
characteristics of the media listed in this table are approximate da ta  and may differ from the values given in 
reference sources. For g --- 0.097 cm/sec 2, the M number for water equals the M number for germanium. 

We consider a region of radius 1.1 cm and height 1.0 cm, which is filled by a germanium melt. From 
(2), it follows that  U = 18.07 cm/sec and L --=- 0.333 cm for germanium. From the found g, with allowance for 
(2), we obtain U = 1.63 cm/sec and L = 27.39 cm for water. Then, the height and the radius of the region 

for water are 82 and 90 cm, respectively. 
We determine now the temperature  differences for the model medium. Since/~ = 0.0002 and 0.0001 

for water and germanium, respectively, the temperature  differences along the radial and vertical directions 

are 0.5 and 75~ 
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The equality between the Mng numbers for the chosen temperature differences is reached at ka = 
0.000333 for the model medium and 0.000166 for the initial medium. Thus, the desired physical, geometric, 
and temperature parameters for the model medium are found. For the two chosen media and corresponding 
boundary conditions, two modeling series were performed, which allowed us to establish the steady-state flow 
patterns. The most intensive flow initiated by thermocapillary convection is observed at the free surface, 
where the maximum velocity reaches 0.5845 cm/sec. The liquid flow on the free surface is transferred inside 
the melt and forms a vortex flow under the free surface. Natural convection from a more heated side wall 
brings the entire melt into motion, with ascent of the melt near the more heated wall and its descent at the 
axis. These two sources of motion give rise to a three-vortex flow structure with decreasing intensity in the 
downward direction. The highest and lowest values of the stream function throughout the entire region are 
0.003 and -0.01999 cm3/sec, respectively, and the minimum value of the stream function in the third vortex 

is -0.00006 cm3/sec. 
The temperature pattern in the melt is stratified into several layers. Normally, melted semiconductors 

possess high thermal conductivity; therefore, the temperature profiles level off rapidly. In the steady-state 
pattern, the temperature distribution is practically linear along the vertical m-ds (the heat here is transferred 

by diffusion). 
In the calculation for the model medium, a similar flow structure and a similar distribution of temper- 

ature isolines were obtained. The highest velocity in the melt at the free surface was 0.05166 cm/sec. The 
highest and lowest values of the stream function in the melt were 1.6137 and -11.1081 cm3/sec. 

The ratio of the minimum and maximum values of the stream function equals 6.66 and 6.88 (absolute 
values) for germanium and for the model medium, respectively (the difference is within 3%). The access of 
the minimum values of the stream function nondimensionalized using Eq. (2) yields -0.0099 and -0.0091, 
respectively (the difference is less than 9%). The Reynolds, Weber, and Froude numbers calculated from 
the maximum velocity at the free surface and from the characteristic length are 476, 0.0034, and 0.000317, 
respectively, for the initial medium and 465, 0.0033, and 0.000306, respectively, for the model medium. 
Taking into account that Gr = Re2Grg/Fr, we establish that the Grashof numbers for the flows under study 

are identical within 1%. A comparison between the data obtained shows that the dimensionless parameters 
in this case differ by no more than 3%, the flow structures being identical. Thus, these flows are similar. An 
analysis of the differences found indicates the necessity to more accurately calculate I~[ for the two media, g, 

and the characteristic length for the model medium. 
The adopted approach allows one to study the behavior of melted semiconductors in terrestrial condi- 

tions using a model liquid in the outer space with required values of M and Pr and necessary geometric and 
temperature parameters. To model the behavior of melts in the outer space by a model liquid on the Earth, 
one should take a liquid with the Morton number of order 10 - i s  under terrestrial conditions. 

3.2. Similarity between Flows with Close Morton Numbers of the Media. We consider now medium 
Nos. 2 and 3 (see Table 1). From the physical viewpoint, these are different media, but the difference in M 
numbers is only about 10%. Since the Prandtl numbers of the media differ, we set, as we did in Sec. 3.1, 
the thermal conductivity of medium No. 3 such that the Prandtl numbers of the two media become equal 
(Pr = 0.05). Let medium No. 3 be the initial medium now. The region occupied by the liquid is a cylinder 
of radius 1.1 cm and height 1.4 cm. Again, the upper surface is assumed to be open and flat. The radial 
temperature difference across the surface is 1~ whereas the vertical temperature difference at the axis is 
75~ Thus, under the action of the Marangoni convection and natural convection from the heated wall, a 
flow develops in the liquid whose steady-state pattern obtained by numerical simulation is shown in Fig. 1. 
Downward from the free surface, four vortex structures with decreasing intensity are seen. The local extrema 
of the stream function for them are -0.067, 0.0088, -0.00027, and 0.00015 cm3/sec, respectively (Pr = 0.05). 
The highest velocity (2.197 cm/sec) is observed at the free surface. Thus, the Reynolds, Weber, and Froude 
numbers are 732, 0.0823, and 44.77, respectively, and the Grashof number is 8.025 �9 10 a. 

The M number for medium No. 2 equals the M number for medium No. 3 at g =- 882 cm/sec 2. With 
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Fig. 1 
b 

Fig. 2 

account of (2), the radius and height of the melted region should be 1.25 and 1.59 cm. The radial temperature  
difference equals 3.35~ and the vertical one is 251.25~ (~ = 0.0002 for GaSb and 0.00067 for medium No. 3). 
From the condition of equality of the Mn 9 numbers, it follows that  k~ = 0.000906. Now, all the parameters 
for flow modeling in the model medium are known. The predicted steady-state flow structure and the field 
of tempera ture  isolines are the same as in Fig. 1. The highest and lowest values of the stream function are 
0.01164 and -0.08798 cm3/sec. The maximum velocity of the melt equal to 2.225 cm/sec is attained at the 
free surface. The calculated values of the Reynolds, Weber, and Froude numbers are 731.9~ 0.0823, and 44.9, 
respectively. The minimum dimensionless values of the stream function for the flows of interest were found 
to be almost coincident: -7 .63  and -7.56.  Thus, the flows calculated for medium Nos. 2 and 3 are similar 

to each other. 
The  above approach permits easy determinat ion of similar flows under terrestrial conditions provided 

that  the Morton (and Prandtl)  numbers of the melt  and the model medium are equal, by choosing proper 
geometric and temperature  parameters. 

3.3. Similarity by the Prandtl Number. The Prandt l  number exerts a substantial influence both  on the 
flow structure and flow intensity. In the above calculations, the thermal conductivity for the model medium 
was changed in such a way that  the Prandt l  number  becomes as low as that for the medium under study. 
Calculations for initial and model media with high Prandt l  numbers (Pr = 2.2) yield unsteady oscillatory 
modes for the velocity and temperature  fields (Fig. 2). The flow structure varies passing through several 
stages: from a two-vortex pat tern  (Fig. 2a) to a single-vortex one (Fig. 2c). The pair of vortices shows 
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local ext rema of the stream function equal to 0.16 and -0.0376 cm3/sec. Initially, under the action of 
thermocapil lary convection, motion beneath  the free surface develops, while vortex motion is observed in the 
remaining par t  of the flow, which is caused by natural  convection from a more heated wall. As a result, a 
tempera ture  field with an even greater local radial gradient is observed near the axis, the gradient changing its 
sign near the edge of the flow (Fig. 2b). The  latter provides conditions for the development of an oppositely 
directed vortex motion, which leads to destruction of the main vortex. The new vortex merges with the vortex 
brought about  by the Marangoni convection, and then single-vortex motion of the entire liquid is observed. 
In the resulting vortex, there are two local extrema of the s tream function equal to -0 .143 and -0 .042 (Fig. 
2c). This leads to redistribution of the tempera ture  field in the liquid and gives rise to a flow similar to that  
shown in Fig. 2a. The process recurs as described above with nearly the same intensity of the flow. The 
stability of the oscillatory regime is ensured by heating from above. 

The  Marangoni convection gives rise to much less intensive flow with a local minimum of the stream 
function roughly equal to -0.036.  The maximum velocity in the liquid is 1.5 (Fig. 2c) and 2.5 (Fig. 2a) times 

greater than  the velocity at the free surface. 
A comparison between the maximum value of the stream function and the velocity field with the 

results of flow modeling for low Prandt l  numbers (see Sec. 3.2) demonstrates a noticeable increase in the flow 
intensity in the liquid. This two calculation series show that  the Prandt l  number of the model medium and 

that  of the melted semiconductor should be as close as possible. 
3.4. Similar Flows in Microgravity Conditions. Microgravity conditions are modeled by a low value 

of g in the equations of motion. Therefore, provided that  the values of g in the problems of Secs. 3.2 and 

3.3 are reduced by an identical factor, the flows remain similar and model the processes under zero-gravity 

conditions. 
Figure 3 shows the flow pat tern  obtained by numerical simulation for the conditions and media in- 

dicated in Sec. 3.2 but  for g decreased by a factor of 104. The  local extrema of the stream function equal 
-0 .1026 and 0.0075 cm3/sec (Pr -- 0.05). An increase in flow intensity compared to the terrestrial conditions 
was observed: the Reynolds, Weber, and Froude numbers are 797, 0.0976, and 53, respectively, and the 
Grashof number equals 8.025. Thus, the low values of the Grashof number do not guarantee origination of 
a flow with low intensity. The tempera ture  distribution is stratified (i.e., it is close to a diffusional flow). 
However, the tempera ture  is not uniform along the radius in horizontal cross sections to the point at the 

lower boundary. 
The  modeling of flows for these media at high Prandt l  numbers reveals flow structures similar to those 

shown in Fig. 3, with the same values of the Reynolds, Weber, Froude, and Grashof numbers. However, 
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the temperature field differs considerably [Fig. 4 (Pr = 2.2); see also Fig. 2b]. Thus, the retarded natural 
convection leads to steady flow structures for media with high Prandtl numbers. 

4. Conclusions.  A new form of the equations of motion and heat and mass transfer is proposed, 
in which natural fluid-dynamic scales of the media under study are used. An increase in the convective 
heat transfer component is established when passing to microgravity conditions. Convective flows under 
outer-space conditions are shown to make a greater contribution to the heat redistribution than they do 
under terrestrial conditions. However, with decreasing g, the development of the flows becomes substantially 
retarded. 

The simple form of the majority of the dimensionless parameters permits a simple classification of 
similar physical phenomena. Similar steady-state flow patterns for different media and gravity conditions are 
reached in different periods of physical time. As a rule, the lower g for a flow, the longer the duration of the 
transition process in it. 

The calculations prove the coincidence between the dimensionless hydrodynamic parameters of initial 
and model media chosen with due regard for their parameters M (or Reg), Pr, Grg, and Mng. 

The proper choice of similar nonisothermal flows of different media requires, first of all, that the 
numbers M and Pr of the media be equal. Choosing media with close Pr and M, we can find the required 
proportion between the characteristic lengths and temperature differences. This, in turn, allows one to find 
similar flows under terrestrial and outer-space conditions. For the outer-space conditions, it was found possible 
to obtain flows with similar hydrodynamics for media with different Prandtl numbers. In this case, the only 
difference is the temperature profiles. This fact can be explained ~v the predominance of the Marangoni 
convection. The contribution of natural convection to flow development is vanishingly small. This conclusion 
clearly demonstrates the importance of making proper allowance for the presence of nongravitational sources 
of motion, which may prove dominating in new conditions. 

Flows caused by impurity-concentration gradients in the melt and at the free surface due to changing 
gravitational conditions can be studied by analogy with the above-considered nonisothermal problems. The 
character of the flows for high Schmidt numbers can be estimated from the numerical data obtained for high 
Prandtl numbers. 
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